Licentiatavhandling vid Fasta Tillståndets Elektronik

Publikationer

  • Mattsson, Viktor

    Evaluation of biomedical microwave sensors: Microwave sensors as muscle quality discriminators in laboratory and pilot clinical trial settings

    2022.

    Licentiatavhandling, sammanläggning

    Abstract

    In this thesis the primary focus is on the evaluation of biomedical microwave sensor to be used in the muscle analyzer system. Lower muscle quality is one indicator that a patient can have sarcopenia. Therefore the muscle analyzer system can be a tool used in screening for sarcopenia. Sarcopenia is a progressive skeletal muscle disorder that typically affects elderly people. It is characterized by several different things, one of them is that there is an infiltration of fat into the muscle. At microwave frequencies the dielectric properties of fat are vastly different than the muscles. So, this fat infiltration creates a dielectric contrast compared to muscle without this fat infiltration that the sensors aim to detect.

    The muscle analyzer system is proposed to be a portable device that can be employed in clinics to assess muscle quality. The sensors are evaluated on their ability to distinguish between normal muscle tissue and muscle of lower quality. This is achieved via electromagnetic simulations, clinical trials, where the system is compared against established techniques, and phantom experiments, where artificial tissue emulating materials is used in a laboratory setting to mimick the properties of human tissues.

    In a initial clinical pilot study the split ring resonator sensor was used, but the results raised concerns over the penetration depth of the sensor. Therefore, three new alternative sensors were designed and evaluated via simulations. Two of the new sensors showed encouraging results, one of which has been fabricated. This sensor was used in a another clinical study.This study only had data from 4 patients, 8 measurements in total, meaning it was hard to draw any conclusions from it. The sensors used in the clinical setting as well as another were evaluated in the phantom experiments. Those experiments were exploratory because a wider frequency range was used, although some problems in the experiments were found.

    A secondary approach in this thesis is devoted to a data-driven approach, where a microwave sensor is simulated. The data from it is simulated and used to train a neural network to predict the dielectric properties of materials. The network predicts these properties with relatively high accuracy. However, this approach is currently limited to simulations only. Several ideas on how to improve this approach and extend it to measurements is given.

    Open access
  • Fjällström, Viktor

    Potential-Induced Degradation and possibilities for recovery of CuIn1-xGaxSe2 thin film solar cells

    2015.

    Licentiatavhandling, sammanläggning

    Abstract

    The long-term performance of solar modules is of key importance to achieve profitable solar power installations. In this work, the degradation mechanism potential-induced degradation (PID) was investigated for CuIn1-xGaxSe2 (CIGS) thin film solar cells. PID is caused by a combination of certain system voltage situations and environment conditions, such as temperature and humidity. The conditions for PID were reproduced in the lab, using small test cells. A voltage was applied between the solar cell back contact and the rear side of the glass substrate while heating the samples to a temperature of 85°C.

    Similar to crystalline silicon technology, CIGS solar cells were found to be susceptible to PID. One critical parameter for the degradation behavior is the choice of substrate and its ability to release Na during applied bias. The degradation was found to be linked with Na migration from the substrate into the devices. Solar cells, which were fully deteriorated in terms of electrical performance by PID, were found to have a substantially increased Na concentration. However, solar cells grown on Na free and high resistivity substrates were observed to be PID-resilient.

    The degradation was shown to partly be non-permanent. Fully degraded CIGS solar cells could recover electrical performance to a certain degree. Three different recovery methods were applied (i) a passive recovery in darkness at room temperature, (ii) accelerated recovery with a reversed bias as compared to the PID treatment and (iii) etching and replacement of the top window layers followed by reversed bias. Recovery to over 90% of the initial efficiency was possible. However, the recovery rate varied depending on the recovery method. The accelerated method was found to reduce the concentration of Na in the buffer layer and interface volumes. The etch recovery method, which consists of renewing window and buffer layers further strengthen the hypothesis that a major part of the degradation could be attributed to the buffer layer and its interface to CIGS.

    The importance of the buffer layer in PID was further highlighted in the experiment where the standard CdS buffer layer was substituted with Zn(O,S). Both types of solar cells degrade in the PID conditions. Zn(O,S) cells exhibited ohmic current-voltage relationship (no diode characteristics) in the degraded state, while the CdS counterpart had some degree of diode behavior. During recovery with the accelerated method, the CdS cells restored both current-voltage and capacitance-voltage behavior to larger extent than the Zn(O,S) cells. For the latter, the efficiency stayed close to zero throughout the recovery period.

    Open access
  • Jobs, Magnus

    Design and Performance of Diversity based Wireless Interfaces for Sensor Network Nodes

    2013.

    Licentiatavhandling, sammanläggning

    Abstract

    The main focus of the work presented in this licentiate thesis concerns antenna design, adaptive antenna control and investigation on how the performance of small wireless nodes can be increased by inclusion of multiple antennas. In order to provide an end-user suitable solution for wireless nodes the devices require both small form factor and good performance in order to be competitive on the marked and thus the main part of this thesis focuses on techniques developed to achieve these goals. Two prototype systems have been developed where one has been used by National Defence Research Agency (FOI) to successfully monitor a test-subject moving in an outdoor terrain. The other prototype system shows the overall performance gain achievable in a wireless sensor node when multiple antennas and antenna beam steering is used. As an example of how to include multiple antennas in a wireless node the concept of using dual conformal patch antennas for wireless nodes is presented. The proposed antenna showed an excess of 10 dB gain when using a single driven antenna element as would be the case in a system utilizing antenna selection combining. When used as a 2-element phased array, up to 19 dB gain was obtained in a multiscattering environment. Using the second order resonance the proposed antenna structure achieves low mutual coupling and a reflection coefficient lower than -15 dB. The presented antenna design shows how a dual antenna wireless node can be designed using discrete phase control with passive matching which provides a good adaptive antenna solution usable for wireless sensor networks. The inclusion of discrete phase sweep diversity in a wireless node has been evaluated and shown to provide a significant diversity gain. The diversity gain of a discrete phase sweep diversity based system was measured in both a reverberation chamber and a real life office environment. The former environment showed between 5.5 to 10.3 dB diversity gain depending on the detector architecture and the latter showed a diversity gain ranging from 1 to 5.4 dB. Also the performance of nodes designed to be placed in a high temperature and multiscattering environment (the fan stage of a jet engine) has been evaluated. The work was carried out in order to verify that a wireless sensor network is able to operate in such a multiscattering environment. It was shown that the wireless nodes are able to operate in an emulated turbine environment based on real-life measured turbine fading data. The tested sensor network was able to transmit 32 byte packages using cyclic redundancy check at 2 Mbps at an engine speed of 13.000 rpm.

    Open access
  • Ericson, Tove

    Reactive sputtering and composition measurements of precursors for Cu2ZnSnS4 thin film solar cells

    2013.

    Licentiatavhandling, sammanläggning

    Abstract

    Cu2ZnSnS4 (CZTS) is a thin film solar cell material that only contains abundant elements and for which promising conversion efficiencies of 9.2 % have been shown. In this thesis composition measurements and reactive sputtering of precursors for CZTS films have been studied. These precursors can be annealed to create high quality CZTS films.

    Accurate control and measurement of composition are important for the synthesis process. The composition of a reference sample was determined using Rutherford backscattering spectroscopy. This sample was thereafter used to find the composition of unknown samples with x-ray fluorescence measurements. Pros and cons with this approach were discussed.

    The reactive sputtering process, and the resulting thin films, from a CuSn- and a Zn-target sputtered in H2S-atmosphere were investigated and described. A process curve of the system was presented and the influence of sputtering pressure and substrate temperature were examined. The pressures tested had little influence on the film properties but the substrate temperature affected both composition and morphology, giving less Zn, Sn and S and a more oriented film with increasingly facetted surface for higher temperatures.

    The precursors produced with this method are suggested to have a disordered phase with randomized cations, giving a CZTS-like response from Raman spectroscopy but a ZnS-pattern from x-ray diffraction measurements. The films have an excellent homogeneity and it is possible to achieve stoichiometric sulfur content.

    The complete steps from precursors, to annealed films, to finished solar cells were investigated for three controlled compositions and three substrate temperatures. The films sputtered at room temperature cracked when annealed and thus gave shunted solar cells. For the samples sputtered at higher temperatures the trend was an increased grain size for higher copper content and increased temperature. However, no connection between this and the electrical properties of the solar cells could be found.

    Open access
  • Grudén, Mathias

    Wireless Sensor Network and Radio Wave Propagation in Harsh Environments

    2012.

    Licentiatavhandling, sammanläggning

    Abstract

    This licentiate thesis cover two important subjects regarding the application of wireless sensor networks (WSNs). Both subjects are related to propagation mechanisms. The first subject is what the radio channel looks like and how it behaves. In this case three different, and extreme, environments are measured and characterized - a train, a half scale jet engine fan and a full scale military jet engine. The train environment is characterized by measure the path loss and fading over distance. For the case with the jet engines, difficulties were found to measure the path loss over distance, so in this case stationary antennas were used, but with the engine running. Each of these shows an extreme type of fading, also known as Rayleigh fading. For the case of jet engine at full speed (about 10 000 rpm), it was shown that the time between two consecutive fading dips where only 290 μs, which is about twice the length of a data package from the WSN involved in this project. The Rayleigh distributed amplitude fading occurs when there is a multipath environment, the radio waves propagate several different paths between the transmitter and receiver, which causes a superposition at the receiver. When having Rayleigh fading, the performance of the radio link is greatly reduced. When applying a WSN in this type of environment, the use of several antennas will improve the received power of the signal. This is done by adding extra antennas to a wireless system and in a clever way combine the signals, or select one of two signals from the antennas. In a book chapter and in a paper presented in the thesis, a new and low energy type of diversity is described. The performance of this new type of diversity is shown by having a two branch diversity and discretely shifting the phase of each branch before combining them. In this case, four relative phase shifts are performed during each symbol received. When performing a combining like this, the energy is saved by not having any decision circuitry. By using this type of diversity and using a 90 % signal reliability and an ideal environment, the diversity gain is 5.5 dB for an averaging detector and 10.3 dB for a peak detector.  The drawback with this system is that it is only limited for systems using simple types of amplitude (ASK) or frequency (FSK) modulation.

  • Böhnke, Tobias

    Copper indium gallium diselenide sun angle detectors and MEMS thermal control surfaces for space applications

    2008.

    Licentiatavhandling, sammanläggning

  • Integration and Analysis of RF-Power LDMOS Transistors

    Bengtsson, Olof

    Licentiatavhandling, monografi

  • High Frequency Analysis of LDMOS Transistors

    Ankarcrona, Johan

    Licentiatavhandling, monografi

  • Anodic Bonding for Microsystem Applications

    Richard, Åse

    Licentiatavhandling, monografi

  • Electrical Properties of Polysilicon

    Rydberg, Matts

    Licentiatavhandling, monografi

  • Microstructure Technology in Quartz and Silicon

    Rangsten, Pelle

    Licentiatavhandling, monografi

  • Silicon-On-Insulator Materials and Devices

    Tiensuu, Stefan

    Licentiatavhandling, monografi

  • Datorsimulering av kiselkrafthalvledare

    Isberg, Mats

    Licentiatavhandling, monografi

Senast uppdaterad: 2022-11-30